针对外部扰动、内部动态以及模型不确定性的水下航行器轨迹跟踪问题,提出固定时间输出反馈控制方案。首先,根据系统输出设计固定时间扩张状态观测器(FESO),使集总扰动和不可测速度的观测误差在固定时间内收敛到0,极大增强系统的鲁棒性。然后,设计固定时间轨迹跟踪控制器(FTTTC),使轨迹跟踪误差固定时间稳定,显著提高控制精度。最后,严格的稳定性分析和综合的仿真研究表明所提出的FESO和FTTTC能够使观测和跟踪误差固定时间收敛,且与初始状态无关。
A fixed time output feedback control scheme is proposed to address the trajectory tracking problem of underwater vehicles with external disturbances, internal dynamics, and model uncertainty. Firstly, a fixed time extended state observer (FESO) is designed based on the system output to ensure that the observation errors of lumped disturbances and unmeasurable velocities converge to zero within a fixed time, greatly enhancing the robustness of the system. Then, a fixed time trajectory tracking controller (FTTTC) is designed to stabilize the trajectory tracking error in a fixed time, significantly improving control accuracy. Finally, stability analysis and simulation studies have shown that the proposed FESO and FTTTC can make the error convergence time independent of the initial state, and have distinct advantages.
2025,47(5): 146-152 收稿日期:2024-3-9
DOI:10.3404/j.issn.1672-7649.2025.05.022
分类号:U675.79
基金项目:江苏省科技项目(BE2020391)
作者简介:唐雯铠(1999 – ),男,硕士研究生,研究方向为海洋无人运载装备
参考文献:
[1] 胡中惠, 沈丹, 王磊, 等. AUV水下空间运动自动控制仿真[J]. 舰船科学技术, 2023, 45(12): 57-62.
HU Z H, SHEN D, WANG L, et al. Simulation of automatic control of AUV underwater space motion[J]. Ship Science and Technology, 2023, 45(12): 57-62.
[2] SAHOO A, DWIVEFY S K, ROBI P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181: 145-160.
[3] WU Y, TA X , XIAO R C, et al. Survey of underwater robot positioning navigation[J]. Applied Ocean Research, 2019, 90: 101845.
[4] ZENG Z, LIAN L, SAMMUT K, et al. A survey on path planning for persistent autonomy of autonomous underwater vehicles[J]. Ocean Engineering, 2015, 110: 303-313.
[5] 李娟, 王佳奇, 丁福光. 基于反馈线性化的AUV三维轨迹跟踪滑模控制[J]. 哈尔滨工程大学学报, 2022, 43(3): 348-355.
[6] 杨莹. 驱动AUV航路跟踪非线性自适应控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[7] 刘金琨, 孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2007, 24(3): 407-418.
[8] LIANG X, QU X R, HOU Y H, et al. Three-dimensional path following control of underactuated autonomous underwater vehicle based on damping backstepping[J]. International Journal of Advanced Robotic Systems, 2017, 14.
[9] 张昌凡, 王耀南. 滑模变结构的智能控制及其应用[J]. 中国电机工程学报, 2001, 21(3): 27-29.
[10] YAN J, GUO Z, YANG X, et al. Finite-time tracking control of autonomous underwater vehicle without velocity measurements[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(11): 6759-6773.
[11] GUERRERO J, TORRES J, CREUZE V, et al. Adaptive disturbance observer for trajectory tracking control of underwater vehicles[J]. Ocean Engineering, 2020, 200: 107080.
[12] ZHENG J, SONG L, LIU L, et al. Fixed-time sliding mode tracking control for autonomous underwater vehicles[J]. Applied Ocean Research, 2021, 117: 102928.
[13] WANG N, LV S, ZHANG W, et al. Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns[J]. Ocean Engineering, 2017, 145(15): 406-415.
[14] POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2011, 57(8): 2106-2110.
[15] ANTONELLI G. On the use of adaptive/integral actions for six-degrees-of-freedom control of autonomous underwater vehicles[J]. IEEE Journal of Ocean Engineering, 2007, 32(2): 300-12.
[16] ZHANG J Q, YU S, YAN Y. Fixed-time output feedback trajectory tracking control of marine surface vessels subject to unknown external disturbances and uncertainties[J]. ISA Transactions, 2019, 93: 145-155.
[17] ZHAO L, ZHANG B, YANG H, et al. Finite-time tracking control for pneumatic servo system via extended state observer[J]. IET Control Theory and Applications, 2017, 11(16): 2808-2816.
[18] CUI R, GE S S, HOW B V E, et al. Leader-follower formation control of underactuated autonomous underwater vehicles[J]. Ocean Engineering, 2010, 37(17-18): 1491-1502.