UUV编队任务在水下协同控制领域具有重要意义,是多UUV协同作业的基础保障。传统的UUV编队控制方法主要基于领航-跟随法、虚拟结构法或一致性控制等方法,存在队形控制依赖特定领航者,或是依赖精确大地位置坐标的问题,缺乏鲁棒性和适应性。因此,本文提出一种基于层级引领式的编队控制策略,群体内事先选定最高领航节点,并基于最短距离和最短通信时延标准招募最优邻居节点作为次一级领航节点,直至群体形成最终的引领关系图,采用节点图匹配的方式确定集群内个体的目标占位点,从而灵活地控制编队的形成与变化。通过仿真结果分析,所提方法可以在绝对位置信息拒止的条件下实现分布式编队控制,对低成本UUV编队场景的实践应用具有一定参考价值。
UUV formation mission is the basic guarantee for multi-UUV to perform coordinated tasks. UUV formation control method is mainly based on the leader-followers method, virtual structure method, consensus control method. The problem with the above method is formation control relies on a specific leader, or relies on accurate geodetic coordinates, lack of robustness and adaptability. Therefore, this manuscript proposes UUV formation control strategy based on hierarchical leaders’ strategy, the highest leader node is selected in advance, and select the optimal neighbor node as the second-level leader node until forming the final leading diagram based on the shortest relative distance and shortest communication delay criterion. The node graph matching method has been used to plan the target occupancy position, so as to form and maintain formation flexibly. Simulation results show the proposed method can realize distributed formation control under the absolute position information denial condition, and have certain value for the practical application of low-cost UUV formation scenario.
2025,47(5): 173-178 收稿日期:2024-6-12
DOI:10.3404/j.issn.1672-7649.2025.05.026
分类号:U674.91
作者简介:赵子皓(1999 – ),男,硕士研究生,研究方向为水下集群
参考文献:
[1] 张亚军. 大型AUV及其水面侦察技术浅析[J]. 数字海洋与水下攻防, 2023, 6(4): 406-412.
[2] 任奕. 美国和俄罗斯大型无人潜航器现状及发展趋势[J]. 舰船电子工程, 2023, 43(2) : 10-13.
[3] SHI L, ZHENG R, ZHANG S, et al. Cooperative flow field estimation via relative and absolute motion-integration errors of multiple AUVs[J]. Automatica, 2022, 141: 110306-110315.
[4] FRATANTONI D M, HADDOCK S H D. Introduction to the autonomous ocean sampling network (AOSN-II) program[J]. Deep Sea Research, 2009, 56(3-5): 61-61.
[5] 付裕晖. 水下移动节点间的水声通信组网协议仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[6] 李娟, 袁锐锟, 张宏瀚. 基于领航跟随法的多AUV编队控制算法研究[J]. 仪器仪表学报, 2019, 40(6): 237-246.
[7] 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制[J]. 控制理论与应用, 2020, 37(11): 2423-2431.
[8] 王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013, 28(11): 1601-1613.
[9] ZHANG S Z, YANG S L, XIANG X B. Formation control of autonomous surface vehicle and experimental validation[J]. IFAC-Papers on Line, 2019, 52(24): 278-282.
[10] 吴立尧, 韩维, 张勇, 等. 基于领航-跟随的有人/无人机编队队形保持控制[J]. 控制与决策, 2021, 36(10): 2435-2441.
[11] 林敏, 夏元清, 吴爽. 多智能体领航跟随一致性和轨迹跟踪问题研究[J]. 无人系统技术, 2018, 1(3): 21-28.
[12] 姜燕, 王道波, 林飞等. 基于匈牙利融合遗传算法的多无人机不平衡目标分配[J]. 电光与控制, 2023, 30(5): 6-10.
[13] 张少泽. 无人艇组网通信与编队控制研究[D]. 武汉: 华中科技大学, 2021.
[14] QIN L, JIANG Z P. Flocking control of multi-agent systems with application to nonholonomic multi-robots[J]. IFAC Proceedings Volumes, 2008, 41(2): 9344-9349.
[15] 付雷, 秦一杰, 何顶新, 等. 基于改进人工势场法的多机器人编队避障[J]. 控制工程, 2022, 29(3): 388-396.