伴随各国对海洋的不断探索以及新时代无人技术的日新月异,水下无人航行器(Unmanned Underwater Vehicle,UUV)作为智能化海洋设备在海洋搜索领域发挥重要作用,UUV集群系统更是具有极高的灵活性、容错性和协作性,所以在水下不良联通环境下UUV的联动搜索问题急需解决。本文针对UUV集群系统在陌生区域执行搜索任务的情况,提出一种基于累计概率最优的UUV集群搜索方法。通过对目标初始位置概率分布估计,选取目标出现概率累计最大化路线,得到UUV路径规划,实现区域搜索,最后通过仿真实验确定了该方法的有效性。
With the continuous exploration of the ocean by various countries and the rapid development of unmanned technology in the new era, unmanned underwater vehicles (UUVs) play an important role in the field of ocean search as intelligent ocean equipment. The UUV cluster system has extremely high flexibility, fault tolerance, and collaboration. Therefore, the problem of UUV linkage search in poor underwater connectivity environments urgently needs to be solved. This article proposes a UUV cluster search method based on the optimal cumulative probability, targeting the situation where UUV cluster systems perform search tasks in unfamiliar areas. By estimating the probability distribution of the initial position of the target and selecting the path that maximizes the cumulative probability of target occurrence, UUV path planning is obtained to achieve region search. Finally, the effectiveness of this method was determined through simulation experiments.
2025,47(5): 183-189 收稿日期:2024-6-9
DOI:10.3404/j.issn.1672-7649.2025.05.028
分类号:E925.2
作者简介:胡智星(1999 – ),男,硕士研究生,研究方向为控制理论与控制工程
参考文献:
[1] KITTINGER J N, KOEHN J Z, LE CORNU E, et al. A practical approach for putting people in ecosystem-based ocean planning[J]. Frontiers in Ecology and the Environment, 2014, 12(8): 448-456.
[2] 冯景祥, 谢飞跃, 张平, 等. 美海上分布式作战研究现状及发展趋势[C]//中国指挥与控制学会. 第九届中国指挥控制大会论文集. 兵器工业出版社, 2021.
[3] 冯景祥, 姚尧, 潘峰, 等. 国外水下无人装备研究现状及发展趋势[J]. 舰船科学技术, 2021, 43(23): 1-8.
FENG J X, YAO Y, PAN F, et al. Research status and development trends of underwater unmanned equipment abroad[J]. Ship Science and Technology, 2021, 43(23): 1-8.
[4] 陈玮, 吴泽伟, 吴晓锋. UUV协同探测的现状与发展前景[J]. 舰船电子工程, 2009, 29(2): 6-8+87.
[5] 张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战[J]. 自动化学报, 2020, 46(5): 847-857.
[6] 刘应状, 朱耀庭, 朱光喜, 等. 机载激光水下目标探测的协同搜索及其仿真[J]. 光电子·激光, 2000(5): 511-513+517.
[7] 郝冠捷, 姚尧, 常鹏, 等. 基于深度强化学习的分布式UUV集群任务分配算法[J]. 指挥控制与仿真, 2023, 45(3): 25-33.
[8] 封锡盛, 李一平. 海洋机器人30年[J]. 科学通报, 2013, 58(S2): 2-7.
[9] 李亚哲, 姚尧, 冯景祥, 等. 基于有限状态机的UUV集群围捕策略研究[J]. 舰船电子对抗, 2022, 45(1): 22-27.
[10] 李大光. “第三次抵消战略”保持美军优势的关键技术[J]. 中国军转民, 2016, (9): 77-79.
[11] 马爱民, 高倩, 申淼. 新技术或将彻底改变未来水下战[J]. 防务视点, 2015(4): 4-6.
[12] YANG M, LI C. Path planing and tracking for multi-robot system based on improved PSO algorithm[C]//2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC). IEEE, 2011.
[13] MASEHIAN E, NEJAD A H. A hierarchical decoupled approach for multi robot motion planning on trees[C]//2010 IEEE International Conference on Robotics and Automation. IEEE, 2010.
[14] CAI Y, YANG S X, MITTAL G S. A PSO-based approach to cooperative foraging multi-robots in unknown environments[C]//2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM). IEEE, 2013.
[15] CAI Y, YANG S X. A PSO-based approach with fuzzy obstacle avoidance for cooperative multi-robots in unknown environments[J]. International Journal of Computational Intelligence and Applications, 2016, 15(1): 1650001.
[16] CAI Y, YANG S X. An improved PSO-based approach with dynamic parameter tuning for cooperative multi-robot target searching in complex unknown environments[J]. International Journal of Control, 2013, 86(10): 1720-1732.
[17] DADGAR M, JAFARI S, HAMZEH A. A PSO-based multi-robot cooperation method for target searching in unknown environments[J]. Neurocomputing, 2016, 177: 62-74.
[18] ZHU Q, LIANG A, GUAN H. A PSO-inspired multi-robot search algorithm independent of global information[C]//2011 IEEE symposium on swarm intelligence. IEEE, 2011.